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In this paper we expand our previous investigation of a quantum particle subject to the action of
a random potential plus a fixed harmonic potential at a finite temperature 7. In the classical limit
the system reduces to a well-known “toy” model for an interface in a random medium. It also applies
to a single quantum particle such as an electron subject to random interactions, where the harmonic
potential can be tuned to mimic the effect of a finite box. Using the variational approximation or,
alternatively, the limit of large spatial dimensions, together with the use of the replica method, we
are able to solve the model and obtain its phase diagram in the T — (4%/m) plane, where m is the
particle’s mass. The phase diagram is similar to that of a quantum spin glass in a transverse field,
where the variable A% /m plays the role of the transverse field. The glassy phase is characterized by
replica symmetry breaking. The quantum transition at zero temperature is also discussed.

PACS number(s): 05.30.—d, 05.40.+j, 75.10.Nr

I. INTRODUCTION

The effects of quantum fluctuations on phase transi-
tions are a topic of significant current research. On the
other hand, the transition into a glassy phase in disor-
dered systems is a topic that is far from trivial and re-
quires special analytical and numerical techniques. In
particular, the behavior of interfaces in disordered sys-
tems has been the subject of many recent papers [1-12].
It is of interest to investigate the combined effect of dis-
order and quantum fluctuations that play a significant
role at low temperatures.

In a recent paper [13], we have focused on the prob-
lem of a quantum particle in a random potential with
power law correlations plus a fixed harmonic restoring
force. This problem has previously been studied clas-
sically [1,8,9,11,12] by using the variational approxima-
tion [8,9,11] (or, alternatively, the large-N limit [10,12],
where NV is the number of dimensions). A transition into
a glassy phase has been identified. The signature of such
a transition is the appearance of solutions with replica
symmetry breaking (RSB) [14]. RSB is typically asso-
ciated with a complicated free-energy landscape charac-
terized by many local minima that are separated by high
barriers. A sharp transition for a single particle must
be an artifact of the variational approximation (or, al-
ternatively, the large-N limit). In reality this must be a
crossover effect over a range of temperatures.

The “toy” model of a particle in a random potential
in one dimension is the simplest example of an interface
problem where the location of the particle stands for the
location of an interface between to phases (such as up
and down spins) and the random potential stands for
quenched impurities that can pin the interface. Under-
standing this problem is the first step of investigating
higher-dimensional manifolds. But the quantum version
of the model also applies directly to a particle such as an
electron in a dirty metal [15], where the strength of the
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harmonic potential can be tuned to mimic a finite box
that the electron is confined to, like the situation that
occurs in certain mesoscopic systems.

The question we have had in mind was what the ef-
fects of quantum fluctuations on this glassy transition
were. There are some similarities between this prob-
lem and the quantum spin-glass problem in a transverse
field [16]. In that problem, tunneling effects produced
by the transverse field eventually lead, for strong enough
field, to the destruction of the spin-glass phase. But this
phase, when it exists, is still characterized by RSB for
the infinite range model. With this analogy in mind, one
should notice, though, that the transition that has been
found for a particle in a random potential [8,9,11] is of
the Almeida-Thouless type [17] in the sense that it is as-
sociated with the appearance of RSB but not with an
order-disorder (spin-glass-like) transition.

In this paper we expand our previous investigation of
the quantum particle and also correct a typographical er-
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FIG. 1. Schematic phase diagram of a quantum particle in
a random potential plus a fixed harmonic potential.
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ror that unfortunately occurred in Eq. (7) of [13], prop-
agated into Eq. (8), and affected some of the numerical
results. We find as before that the glassy phase, char-
acterized by RSB, persists in the presence of quantum
fluctuations. However, we find that for small enough
particle mass [m and % enter only in the combination
k = (m/h?)], the glassy phase ceases to exist. Thus the
parameter 1/x plays a similar role to the transverse field
in the Ising spin glass. A schematic phase diagram is
depicted in Fig. 1.

II. BASIC DEFINITIONS

The density matrix for a particle at finite temperature
T = 1/kpp, subject to a harmonic potential and a ran-
dom potential V, is given by the functional integral [18]

x(U)=x’ Ul mix(u)]?
o0 = [ [dx]e,(p{_% | [_[ ()

+&[§—(§QE +V(x(u))] du}, (2.1)

where x is an N-dimensional vector (NN is the number
of spatial dimensions) and U = Bh. The variable u has
dimensions of time and is often referred to as the Trotter
dimension. For the diagonal elements of p we observe
that the trajectory x(u) forms a closed path. In this
paper we are concerned with a random quenched poten-
tial V(z) and quantities of interest are the averaged free
energy and the mean-square displacement given by

~0(Fn = (in [ )i (22)
(x*) g = <M> , (2.3)
/p(x, x)dx | r

where () g stands for an average over the random realiza-
tions of the potential. The difficulty in carrying out the
quenched averages stems from the fact that in Eq. (2.2)
the average is taken after taking the logarithm, i.e., the
averaged free energy is not the logarithm of the averaged
partition function. Similarly, in Eq. (2.3) the average of
the quotient is not equal to the quotient of the averages.
We take the potential V(z) to be Gaussian distributed,
which means that the probability for a given realization
of the potential is

P(V(z)) = Cexp (-—/dzdm’V(w)A(w - x’)V(m’)) :
(2.4)

with some known function A(z —’). It is thus sufficient
to know only the first two moments of the distribution,
viz.,

(VN =0, (VX)V(')g = —-Nf (%) ’

(2.5)

where the functions f and A are related to each other.
The function f describing the correlations of the random
potential is taken to decay as a power at large distances:

fly) =

(a0 + y) ' 7. (26)

_9
2(1=n)
The index v describes the behavior of the correlations of
the disorder at large distances. In this paper we consider
only two cases: that of v = 3/2, which we call the case
of short-range correlations, and that of v = 1/2, which
we call the case of long-range correlations [7,8,11]. The
parameter ag plays the role of a short-distance regula-
tor for f. We chose these values of v in order to make
contact with known results in the classical case. In the
classical case it has been shown (for V = 1) that correla-
tions falling faster than those characterized by v = 3/2,
even correlations falling exponentially fast, are equiva-
lent within the variational approximation to the case of
~v = 3/2 [7,11]. This fact also holds in the quantum case,
as demonstrated in Sec. III below. The long-range case
is of interest because of its connection with the directed-
polymer problem and with the random-field Ising model
6,7,9,11].

We apply the replica trick in order to carry out the
quenched average over the random realizations. We con-
sider n copies of the system and obtain for the averaged
density matrix

p(xl"'xnaxl"'xn,U)

xqa(U)=%x, T
— / [T ldxa] exp {~Ha/B}, (2.7)

a(0)=xq a=1

U
Hn = %/0. du Z[mxi(u)-*— px2(u)]

1 (v U
— du’
+2ﬁ0duA ugN

x f (M) . (2.8)

N

Note that this equation, although somewhat similar, is
quite different from the equation for the n-body Hamil-
tonian corresponding to the directed polymer problem in
1+ N dimensions [7]. The difference is, first, the fact
that the integral over the “time” variable u is on a fi-
nite interval, and second and more significantly, that the
n-body potential is nonlocal in time, i.e., it involves a
double integral over both u and u'.

III. THE LARGE-N LIMIT AND THE
VARIATIONAL APPROXIMATION

In the large-N limit, we introduce collective variable
fields 7gp(u, u'),

ros(,u') = %xa(u) - xp () (3.1)

and Lagrange multiplier fields sqp(u,u’) to implement
(3.1). We find [10]
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p(xl"'xn1x1"

a (O)=xa

1

27 // dudu’ ZNf(r,m u,u) + rop (', u') — 2rap(u,u'))

From here it follows that the free energy is given by

X, (U)=%xa ™
cxn,U) = / H[dxa /1‘[ o (1, )] [dsan (u, )]

a<b

T D>
X exp ————2/ du/ du [
2h2 J, 0 s

Nrgp(u, u') — Xq(u) - Xp(u')]8ab(u, u')

U
2% J, du Xa: [mxi(u) + uxﬁ(u)]

(3.2)

1 v v 1 - ! /
nB(F)p /N = ﬁ/‘) du/o du ;[rab(u,u)sab(u,u)

+f(Taa(u, ) + rop(u',u') — 2rgp(u,u'))] — ln/ Hdza/z

where we defined

J—-—i UduZ[mm'z(u)+ zZ(u)]
- 2k o - a HTq

U
+%5/A du du’Zsab(u,u’)ma(u)mb(u’). (3.4)

a,b

The limit n — 0 is to be taken. In Eq. (3.3) the variables
z,(u) are scalars since a factor of N has been extracted.
In the large-N limit the collective variables rq4(u, u') and
Sab(u,u’) are determined by the stationarity of the free
energy. We will be looking for solutions of the saddle-
point equations obeying translational invariance in the
time direction, i.e., such that the order parameters de-
pend only on the difference { = u—u'. They should also
be periodic functions of this variable with period U and
also symmetric under { — —( (even functions).

In the case of a classical particle there is another ap-
proach to the problem called the variational approxi-
mation, which yields essentially the same results as the
large-N limit aside from a simple renormalization of the
correlation function of the disorder. For the quantum
potential we were able to show that the same results still
hold. Let us introduce the variational Hamiltonian

1

U
h, = 5/0 du ;[mx Z(u) + px2(u)]

1 U U
- du/ du’
JRTED>

Then the variational free energy is given by

ln/[dw]e_h"/ﬁ. (3.6)

In Appendix A we show that the variational free en-

Sab(u — u')x,(u) - xp(u).

(3.5)

nB(F)p /N = (Hn—hn)n, /B~

H[dza]eJ, (3.3)

a(0)=za (U)=za 4

[
ergy coincides with that given in the large-N limit [see

Eq. (4.5) below], with the following renormalization of
the function f defined in Eq. (2.6):

“rvrm e (W),
(3.7)

fly) = fv)

The effective correlation f is similar to f in the sense
that for large arguments

F@) ~ ==y, 3.8
0~ 5573 (3.8)
with
N
. ’Yif’YS?‘Fl
T=YN N
—+1 ify>—+1
2+ 17_2+
and

d=g

I(1—y+N/2) (N\ 7' (3.9)

T'(N/2) 2 ' )
Since we will be mainly concerned with the case where
4 = ~, the values for g quoted in the numerical work be-
low should actually pertain to the renormalized coupling

§. In the limit N — oo, f approaches f.

IV. THE STATIONARITY CONDITIONS AND
THEIR EXACT SOLUTION ASSUMING
REPLICA SYMMETRY

In this section we will derive the stationarity equa-
tions for the free energy and solve them in the replica-
symmetric (RS) case. The case of RSB will be discussed
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in Sec. V. We proceed by transforming to frequency space
by using a Fourier series representation of the order pa-
rameters

ras(€) =% 3 exp(—iwr €) Fas(wr), (4.1)
l=—o00
sab(C) = % D exp(—iws ¢) Sap(wr), (4.2)
l=—o0
where
w = %”z, I=0,+1,+2,... (4.3)

Equation (4.3) follows from the periodicity of the order
parameters. From the fact that r4,({) (and also s) are
even functions, it follows that 7,(w) = Fop(—w) and sim-
ilarly for s. To proceed we note that for any periodic
function g(u — u’) with period U it follows that

/OUduLUdu’g(u—u')
=/0Udu/0" dgg(g)+/ou du/_0U+u d¢g(¢)
=/0Udu/0udcg(4)+/0UduLUng(C—U)

=AUdu/0Ung(() =UAUng(<)-

In terms of the new variables introduced in Eq. (4.2),
the free energy becomes

nB(F)g /N
- % >3 Fa@)ia(@) - 3 3t mG(w)

w a,b

U

(4.4)

—2¢~'¢ Fab(w’)]) + const, (4.5)
where we defined |
Gap(@) = {((me® + W1 - 5@)] Yap (46)

The constant in Eq. (4.5) can most easily be determined
from the known free energy for a free particle (f = 0 and
p=0).

From Eq. (4.5) it follows that stationarity equations
are given by

Tab(w) = Gap(w), (4.7)
U
fanlw) = 2 /0 dceit f’(% ;[Faa(w') + Fep(w)
—2e—iw’<fa,,(w')]), a#b, (4.8)

U
o) + Y aas(0) + 7 [ dC (1= )

b#a Y

x f' (% ) Faa(w') (1- e—i“'<)> =0. (4.9)

w!

In Eq. (4.8), f' stands for the first derivative of the
function f, characterizing the correlations of the random
potential.

We proceed to look for a RS solution to these equations
by taking all the elements 74 (w) = 7(w) with a # b to be
equal to each other (for the same frequency) and similarly
for 855(w) = §(w). The diagonal elements are also taken
to be equal to each other and are denoted by 7#4(w) and
54(w). In the limit n — 0 we find from Egs. (4.9) and
(4.8) by inverting an n X n matrix,

1
mw? + u — §4(w) + §(w)
§(w)
[re? + 1 = 5a(@) + @)
§(w)

[mw? + p — 8a(w) + 8(w)]*

Fa(w) =

(4.10)

Fw) = (4.11)

These expressions have to be substituted into Egs. (4.8)
and (4.9) to obtain the self-consistent equations for 5 and

§d:
U
§(w) = % /0 d¢ <
2 1
xf l:ﬁ ; (mwlz +p— gd(w/) + §(wl)

5(0)') (1 —_ e—iw'C)
+ [mw? + p — §4(w) + 5(“])]2):} ) (4.12)

U
fuw) =50~ 7 [ - e

x f' [% Z (1- e—i“"c)

9 1
mw'? + p — 5g(w’) + 3(w')
5(w')
M ma + 5= sa(w) + §(w’)]2>}' (4.13)

We will now seek a solution with time-independent off-
diagonal elements. This is in analogy with quantum spin
glasses [16,19], the rationale being that the off-diagonal
elements of » and s are the glass order parameters and
hence are constants independent of the Trotter time. We
find that such a solution satisfies the saddle-point equa-
tions exactly. The diagonal elements are still time de-
pendent. In frequency space we look for solutions of the
form

§(w) = 5 b0 (4.14)

This ansatz satisfies Eq. (4.12) and we obtain
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1

U
sa(w) =5 — %/0 dC (1 — %)

1
1— —-zw ( _
go( mw'? + p — Sa(w')
(4.16)
Two physical quantities of interest are
1 oo
((x*))r/N = Zraa (0) = r4(0) = B, Z Fa(wr)
(4.17)

() = ) /N = = 3 raal0) -

= r4(0) — r(0).

n(nl— 1) Z'rab(())
a#b
(4.18)

The very last equality holds if one assumes replica sym-
metry

((x*))r/N =

1 1 1 s
a8 Ly o) P
(4.19)

and

(%) = (0)*)p/N = =

PN )
(4.20)

In all the equations derived above, m and % enter only
through the combination

K

3

(4.21)

The classical limit is given by £ — 0 and consequently
Kk — oo. Practically, this limit can be achieved by tak-
ing the particle’s mass to be very large. On the other
hand, the quantum limit is obtained for very small par-
ticle mass. In the classical limit only the zero-frequency
component of the observables survives and we obtain,

e.g.,
12 (2
o Tt (ﬁ#)’

which agrees with Refs. [8,11].

From Eqgs. (4.19) and (4.15) it follows that the expres-
sion for ((z?))g in the quantum case is the same as in
the classical case, but with a renormalized temperature
1/Br given by

{(z*))r = (4.22)

1 1

—_— =t — p
wBr  up B wz#o mw'? + p — F4(w’)
1 1
= N_,B + Ebo(ﬂ, Ky Hy g)’ (4‘23)
where we defined
2 1
bo(B, Ky 1y g) = = S 4.24
(B, 5,2 9) ﬂ“;omw2+u—3d(w) (4.24)

The minimum of the mean-square displacement in
Eq. (4.22) is attained for

1 -
TS = 1/85 = 3 (2y gm0/

260#
(4.25)

In the quantum case, it follows from Eq. (4.23) that the
temperature for which the minimum is attained is given
by a solution of the equation

1
T. + Eubo(l/Tc,n,p,,g) =T (4.26)

We will see in Sec. V that for the case of long-range
correlations, the temperature for which the minimum of
the mean-square displacement is attained is indeed the
transition temperature into the glassy state characterized
by RSB. For the case of short-range correlation of the
disorder, even in the classical case the transition into
a replica-broken phase occurs only approximately at the
temperature given by Eq. (4.25) if p is not too small [11].
Otherwise the transition 7* into a RSB phase occurs at
a higher temperature than given by (4.25). The value of
the mean-square displacement at the minimum is given

by

(/N = (14 ) (2) 7/ DG/ 0402/ 04)
_%ao. (4.27)

We now turn to the numerical solution of Eq. (4.16).
Some technical details of the numerical procedure are
given in Appendix B. First we consider the case of long-
range correlations of the disorder with v = 1/2. In Fig. 2
we display the results for the mean-square displacement
for various values of &k = m/h2. We have chosen g = 2/2,
ag = 0.01, and g = 1 in order to compare with results of
the classical case [8]. For these values of the parameters,
T.(o0) = 0.995. For large « there is good agreement with
known results for the classical particle [8]. As « decreases
and quantum effects become more significant, the mini-
mum of the curves moves to the left, which shows that by
is increasing and hence T, is decreasing [see Eq. (4.26)].
For k = 0.17 the minimum of the curve is at about T' = 0
and for lower values of x no minimum occurs at a posi-
tive temperature. From this data we can reconstruct an
approximate phase diagram in the T'— 1/« plane; see Fig.
3.

We now turn to the case of short-range correlations of
the disorder, i.e., ¥ = 3/2 [recall Eq. (2.6)]. We have



348 YADIN Y. GOLDSCHMIDT 33

3.5

33

()R

31

L I !
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T

FIG. 2. Plot of the mean-square displacement vs
t = T/T.(co) for the long-range case (y = 1/2). Curves
from right to left are for x = 1000,2,1,0.5,0.25,0.2,0.18,0.1.
The horizontal dashed line represents the RSB solution below
T.(k).

chosen ap = 1, g = 1/v/2m, and p = 0.53 in order to
compare with the results of the classical case [11]. In
Fig. 4 we plot the mean-square displacement given by
Eq. (4.19) for various values of x as a function of ¢ =
T/T:(o0), where T.(k) is the temperature for which the
“transition” into the glassy state occurs. Thus t =1 is
the rescaled temperature for which the transition occurs
in the classical case (kK = o0). For the values of the
parameters we have chosen, T.(co) = 0.2082. We see
that the situation is similar to the long-range case. The
value of x for which the minimum of the curve hits zero
is about 2. The reconstructed phase diagram is given in
Fig. 5.

In Appendix C we review, correct, and present more
details of the real-space approach used in our previous
investigation [13]. The formalism is set up for first-step
RSB. (The need for RSB at low temperature will be dis-
cussed in Sec. V.) We have checked numerically that for
replica symmetry and long-ranged correlations of the dis-
order the plots of the mean-square displacement vs tem-
perature coincide with those obtained from the momen-

6
F-----
4 F
»
s |k
0 1 1 L L k-
0 0.2 0.4 0.6 0.8 1

T

FIG. 3. Phase diagram for the long-range case for g = 2v/2

and g = 1. The dashed line is a possible extrapolation to

T =0.

1.1
1.08 |-
1.06 |

1.04 [‘

()R

1.02 |-

0.98 : - L
0 0.5 1 1.5 2

T Me(e)

FIG. 4. Plot of the mean-square displacement vs T" for the
short-range case (y = 3/2). The notation is the same as in
Fig. 2.

tum space calculations as reported above.

We finish this section with a discussion of the zero-
temperature limit. In this limit the frequency becomes
a continuous variable and the equations for 5 and 54(w)
become

- (1 [ dw'’
56 = 2f (; /- W,zﬂ_gd(w,/h)),

Sa(w/R) = —2 /_m d(1 — &)

(2w
- d
X[f (ﬂ o R 4 = 54w /)

(1 [ dw'
—f (;Lw KW’2’+N_§d(w’/h)>:l, w#O

54(0) = 5. (4.28)

where we have rescaled the variables ¢ and w by 1/A and
% respectively. In terms of the solution to Eq. (4.28), the
expression for the mean-square displacement becomes

() R/N = 3bo(B = 00,5, 1,0)

12F (bo(B = 00,k 9)).  (4:29)
0.5
0.4}
0.3 [
*
02|
o1}
0 1 Il L |
0 0.05 0.1 0.15 0.2
T
FIG. 5. Phase diagram for the short-range case for

g = 1/4v/27 and p = 0.53.
for k = 1000, 10,4, 3,2.5,2, 1.

Curves from right to left are
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with

1 [ dw’
bo(ﬁ = 007""’#79) = ; Lm w2 +p— gd(wl/h)'

(4.30)

Equation (4.29) is similar to the classical expression
(4.19), with the temperature variable T replaced by
(1/2)pubo(B = o0,k,p,g). From Eq. (4.26) it follows
that the quantum transition at T = 0 (for the case of
long-ranged correlations) occurs when k = k., where

cl

1 c
EbO(IB = OO,NC,/I,,Q) =

- (4.31)

V. REPLICA-SYMMETRY-BREAKING
SOLUTION

In this section we proceed to explore the possibility
of RSB. The need to break replica symmetry has been
demonstrated in the classical case below a certain tran-
sition temperature T.. The physical origin of RSB is the
existence of many local minima of the free energy, sepa-
rated by barriers. A sharp transition temperature for a
single particle exists only in the large-N limit or within
the framework of the variational (Gaussian) approxima-
tion. Classically the pattern of RSB depends on the range
of correlations of the random potential. For short-range
correlations a one-step RSB has been found sufficient,
whereas for long-range correlations a continuous RSB has
been found necessary [8,11]. In the quantum case we will
show below that RSB also occurs if the strength of the
quantum fluctuations is not too large. Support for this
assertion also comes from the fact that for the RS so-
lution a plot of ({(z%))gr vs temperature (Fig. 2) is not
monotonic, but increases as T — 0 for k¥ not too small.
This indicates that the RS solution is inadequate at low
temperatures in this case. Practically one can compare
the free energies associated with the RS and RSB solu-
tions (if the latter exists) and verify that the free energy
of the RSB solution is higher (an artifact of the n — 0
limit). This indicates that RS has to be broken. This
is indeed the situation in the classical case and it carries
over to the quantum case as explained below.

In constructing a RSB solution we associate

8ga(w) = 8a(w), (5.1)

Sap(w,2) ¢ 3(2) 64,0, aF#Db (5.2)
where the Parisi parameter 0 < z < 1 labels the “dis-
tance” between the replica indices ab. Again, we have
used the static ansatz for the nondiagonal matrix ele-
ments, which will turn out to be a consistent solution.
One should not confuse the frequency dependence of the
diagonal element §4(w) with the z-parameter dependence
of 5(z). A similar parametrization applies to 7q3(w). To
write down the expressions for 7, analogous to Eq. (4.11),
we need the expression for the inverse of a hierarchical
matrix (see Appendix II of [8]). We then find

- 1
mw? + p — §4(w) + 80 fol dz5(z)

y (1 REC =M0)5w,0
Yz [3](2)
tioo [ oy [51(z))’

Fw, 2) = 7(2)8u.0 = duw0 1 ( (8](2) 5(z=0)

(5.3)

p\ze+EE@) T s

fde[3(2)
= u+[§](2))’

[8]() = = §(2) — A dz 3(2).

(5.4)

where

(5.5)

Using these formulas, the stationarity equations [see Egs.
(4.8) and (4.9)] become

3(z) = 28f' [% (W%]W - /21 gzl; ﬁﬂ@))

2 1
+Bw§%mw2 +u—§d(W)] ' (5-6)
1 v
Sq(w) = /(; dz 3(z) — %/0 d¢ (1 — ™)
2 _—iw'¢ 1
xJ B ago e S + 1 — Sa(w')
(5.7)

If we compare Eq. (5.6) with the corresponding equa-
tion in the classical case, we see that it is the same, apart
from a “renormalization” or shift of the constant ag ap-
pearing in the definition of the function f [see Eq. (2.6)]:

ap — aR(ﬁ, Ky, 1, g) =ap + bO(/Ba K/:“ag)' (58)

The crucial point is that by is independent of z. We
will discuss first the case of long-range correlations of the
disorder. Omne can repeat the steps carried out for the
classical case [8,11] and we find the following solution to
Eq. (5.6):

3423, 0<z<2z
5(z) =¢ 3422, z1<z<2
3422, z»<z<1,
with
A = (2/3)°¢°6°, (5.9)
3 _ -
2 = =g~ 3ut3p7 (5.10)

2
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and 2z, is the solution of the equation

%ﬂAaRzg + zp — 3_ 0. (5.11)

4

We observe that the only difference from the classical

case is the appearance of the renormalized function ap

instead of ap in Eq. (5.11). This solution becomes replica
symmetric for 2; = 2, which occurs when

1 _ 1
Tc = ]_/,8c = Egz/su /3 EaR(,BcaKw u,g)- (512)

This constitutes an equation for the transition tempera-
ture into the glassy phase. Notice that for v = 1/2 this is
the same as Eq. (4.26) in Sec. IV, which was obtained by
minimizing the mean-square displacement in the replica
symmetric case. Also, it follows from Egs. (4.17) and
(5.3) that in the presence of RSB

+§(z=0)+_1_/1 dz [3](z)

2 L =
(x*Nr/N = Bu Bu? Bu 22 p+ [5](2)

+%§mw2+:—§d(w)' (5.13)
Using the RSB solution obtained above, we find
(RN = S0 = Jan+ b
= ggz/sp,_l/3 - %ag, (5.14)

which is exactly the same as found for the minimum of
the replica-symmetric expression in Sec. IV [Eq. (4.27)
for v = 1/2]. Thus, through the entire glassy phase
the mean-square displacement remains locked at this con-
stant value.

Let us comment briefly on the zero-temperature limit
of the RSB solution. In that limit the solution given in
Eq. (5.9) becomes

(gp)?/3, 0<z<z
5(5) =4¢ (3)%(982)?, zn1<z2<z
gag'’?, 25 <2< 1,
with
2 = gg_z/3u1/36_1, (5.15)
2y = gg*l/za;i”’*ﬁ—l. (5.16)

For 3 — oo this solution appears more replica-
symmetric-like, but it really is not, since the value at
z = 0 is always different from the value at z # 0 and the
contribution to the mean-square displacement remains
flat.

In the short-range case Eq. (5.6) has a one-step RSB
solution, as in the classical case, again since the only
difference from the classical equation is a renormalization
of ap. The equations can only be solved numerically [11]
and a detailed investigation will be carried out elsewhere.

VI. CONCLUDING REMARKS

In this paper we have investigated the combined ef-
fects of quantum fluctuations and quenched disorder for
the case of a particle subjected to a combination of a
fixed harmonic potential and a random potential with
power law spatial correlations. Acting separately, disor-
der and quantum fluctuations both increase the mean-
square displacement of the particle. From Figs. 2 and
4 it becomes evident that at high temperature, adding
quantum fluctuations in addition to disorder increases
the mean-square displacement, but at low temperature,
in the phase characterized by glassy behavior, the mean-
square displacement remains locked probably due to tun-
neling effects among the different free-energy minima.

We have seen that the phase diagram of the model is
similar to that of the quantum spin glass in a transverse
field. There is a transition at zero temperature from a
phase characterized by RSB effects to a phase where such
effects are not present.

It may be possible to extend the problem of a quantum
particle to higher-dimensional manifolds in a disordered
medium and explore the effects of quantum fluctuations.
It may be also possible to extend the problem to many
particle systems where statistics might play an important
role. We hope our work will stimulate further research
in this interesting area.
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APPENDIX A

The major step in calculating the variational free en-
ergy is evaluating the expectation value

(=),

This is done by expanding f in a power series and using
the formula

([xa(u) = xp(u)]?),,

(A1)

N Qi(%z-iz_)TZ)”[éaa(O) + Gup(0) — 2Gap(u — )7,
(A2)

where we defined
NGap(u—u') = (xa(u) - xp()),, (A3)

Resumming the series gives rise to f(Gaa(0) + Gps(0) —
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2G b (u — u')).
In momentum space conjugate to the Trotter time the
variational free energy becomes

nB(F)p, /N = % Ew: %; Glap () Fas (w) — % ;tr In G(w)
U 1 ,
o Zb/O dc f (E 3 [Guale)

+Gpp(w') — 2e7'¢ Gab(w')]) + const,

(A4)

where 3,5(w)/0 is the Fourier transform of sq;(u—u') and
Gop(w) is the Fourier transform of éab(u —u'). This free
energy coincides with the one derived from the large-N
limit with the replacement f — f.

APPENDIX B

In this appendix we provide some further details on the
numerical solution of Eq. (4.16) and the evaluation of
the mean-square displacement Eq. (4.19). Our goal is to
minimize the error in the truncation of high frequencies.
Hence we define the function t4(w) for w # 0 by

fd(wl) = §d(w) + E, (Bl)

where £ will be adjusted such that for the highest fre-
quency included t4(wmax) = 0. We then use the formula
(20]

e—iwC 1 cosh[a(l —2¢/U)] 1

,3 Z mw? + p 2\/75;‘1 sinh(a) - B’ (B2)
with

_B |k

e (B3)
to write

2

-zw(

ﬂzmwzw—sd(w)

_ 2 + 1  coshlagr(l —2(/U)]
,BILR KILR sinh(ag)
“‘”‘Cid(OJk)
52 Z Y o ) o S vy R
where
ap = g. 23 (B6)

A similar expression is used for the case of ( = 0. The
equations for £4(wg), £, and 3 were solved numerically
with kmax = 10. We used a FORTRAN routine [21] that
finds a root for a set of nonlinear equations. The solution
was then used to calculate the mean-square displacement.

APPENDIX C

In this appendix we give some of the details omitted in
Ref. [13] for lack of space, as well implement some correc-
tions. Some of the notation is slightly different than in
the present paper. Starting with Eq. (3.3) we proceeded
in I to look for a saddle point under the constraint that
the off-diagonal elements of the order parameters r» and
s are independent of the Trotter time, whereas the di-
agonal elements denoted by x(u — u') = rq(u — u’) and

v(u —u') = sq4(u — v') are dependent on u — u/. In the
one-step RSB we have used the notation
r(z)=ry, z<k (C1)
r(z) =rn, z>k, (C2)

where k has been used to denote the breaking point z..
A similar notation applies for s. Substituting these order
parameters in the expression for the free energy we obtain

U U
B(F)g /N = g—[k(Tzsz —T11811) — Tr282) + % /0 /0 dudu'x(u — u')v(u —u')

2
—é—kf(Zx(O - 27‘11) + é6h2

where Dz = (dz/v/27) exp(—2%/2) and similarly for Dy,
and Zy = [dz [[dz]e H/". H is the one-dimensional,
one-particle effective Hamiltonian given by

H = / du( &2 (u) + wz(u)

—(2z4/511 + yV/'s2 — 311)“3(“))

U U
_hli_i L A dudu’ [u(u — u’) - 82] I(’U,).’L'(’u,'). (04)

(k —1)f(2x(0) — 272)
’ ' 1 [
+W //dudu F(2x(0) — 2x(u —u')) — P [w Dz ln/Dy (ZH)k + const,

(C3)

[
The different order parameters are determined self-

consistently from the equations that extremize (F')p:

/ Dy ((w)a(v)) 4 ZH

/Dka

/ Dy (w(u))  Z%

/ DyZy

x(u-w)= [ D= (cs)

ru:/Dz

2

(Ce)
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e [0 [yt 2t o

/DyZIkI

v(u—u') = [2kf' (2x(0) — 2711)
+2(1 — k) f'(2x(0) — 273)

U U
g [ [ dudu' s 2x(0) - 2xu— w))]
xUéd(u —u') + 2f'(2x(0) — 2x(u — v')),

(C8)
811 = 2f'(2x(0) — 21"11), (Cg)
s2 = 2f'(2x(0) — 2rz). (C10)

The equation for the breaking point & is given by

2 2
%(7‘232 —T11811) — %—f@x(O) —2r11)

2 oo
+%—f(2x(0) —2rp) + Elz_/;w Dzln/Dy(ZH)k

J

53

We have continued by putting the time variable on
a lattice, with lattice spacing U/M, where M is to be
taken eventually to infinity. In practice we carried out
exact calculations up to values of M = 20 and extrap-
olation to M = oo has been made by finite-size scaling
and the 1/M? rule [16]. The calculation involves finding
the inverse and the determinant of the M x M matrix M
appearing in the expression for the discretized effective
Hamiltonian; see Eq. (C4):

M ug KM
M, ;= bi; (2'€F + M) - 75i+1,j

2

-%[v(li —jl)—s2], i<hi#1,  (Cl12)

where k = m/k%. For i = 1 there is an additional term
(—kM/B)ép,j- For j < ¢ the matrix is given by symme-
try.

Using this notation, the final result for the discretized
free energy is

2 2
BUF) R /N = [b(rass = ruson) = rasa] + fm;xui—ﬂ)u(li—m

k32

(k—1)p
2

£@x(0) ~2r2) + S 3 £(2x(0) — 2x(li — 31)

M KM 1 1 2 ov?
where we defined
1 _
o= i Z(M l)ij, v? = 32551, vg = ,62(32 — 811). (C14)
J

The different order parameters have been obtained by extremizing Eq. (C13).
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